Process analyses are becoming more and more standard in research on computer-supported collaborative learning. This paper presents the rational as well as results of an evaluation of a tool called TagHelper, designed for streamlining the process of multi-dimensional analysis of the collaborative learning process. In comparison with a hand-coded corpus coded with a 7 dimensional coding scheme, TagHelper is able to achieve an acceptable level of agreement (Cohen's Kappa of .7 or more) along 6 out of 7 of the dimensions when we commit only to the portion of the corpus where the predictor has the highest certainty. In 5 of those cases, the percentage of the corpus where the predictor is confident enough to commit a code is at least 88% of the corpus. Consequences for theory-building with respect to automatic corpus analysis are formulated. Potential applications as a support tool for process analyses, as real-time support for facilitators of on-line discussions, and for the development of more adaptive instructional support for computer-supported collaboration are discussed.