ABSTRACT

Many experimental techniques were developed to study ankle-foot biomechanics. Due to the lack of technology and invasive nature of experimental measurements, experimental studies were often restricted to study the plantar pressure and gross motion of the ankle-foot complex and the evaluation of internal bone and soft tissue movements and load distributions are rare. Many researchers have turned to the computational approach, such as the finite element (FE) method, in search of more biomechanical information. Continuous advancement in numerical techniques as well as computer technology has made the FE method a versatile and successful tool for biomechanical research due to its capability of modelling irregular geometrical structures, complex material properties, and complicated loading and boundary conditions in both static and dynamic analyses. Regarding the human foot and ankle, the FE approach allows the prediction of joint movement and load distribution between the foot and different supports, which offer additional information such as the internal stress and strain of the modeled structures. Although the FE method has been widely used in studying the intervertebral, shoulder, knee, and hip joints, the development of detailed FE foot model has just been sparked off in the late 1990s. In this chapter, the current establishments, limitations, and future directions of the FE modelling technique for the biomechanical research of the foot and ankle are discussed.