There are a variety of techniques available to measure uranium levels in fluids, including neutron activation analysis [1], kinetic phosphorescence analysis (KPA) [2,3], alpha spectrometry [4], liquid scintillation spectrometry [5], and inductively coupled-plasma mass spectrometry (ICP-MS) [6]. The unifying feature of these techniques is that they either require extensive sample preparation (sometimes requiring days to complete) or utilize expensive instrumentation with which to conduct the analysis. Although the ICP-MS remains the method of choice for differentiating natural vs. depleted uranium, there are instances when a procedure to rapidly screen samples for the presence of uranium would be beneficial.