ABSTRACT

Nanofibers are solid state linear nanomaterials characterized by flexibility and an aspect ratio greater than 1000:1. According to the National Science Foundation (NSF), nanomaterials are matters that have at least one dimension equal to or less than 100 nm [1]. Therefore, nanofibers are fibers that have diameter equal to or less than 100 nm. Materials in fiber form are of great practical and fundamental importance. The combination of high-specific surface area, flexibility and superior directional strength makes fiber a preferred material form for many applications ranging from clothing to reinforcements for aerospace structures. Fibrous materials in nanometer scale are the fundamental building blocks of living systems. From the 1.5 nm double helix strand of DNA molecules, including cytoskeleton filaments with diameters around 30 nm, to sensory cells such as hair cells and rod cells of the eyes, nanoscale fibers form the extracellular matrices or the multifunctional structural backbone for tissues and organs. Specific junctions between these cells conduct electrical and chemical signals that result from various kinds of stimulation. The signals direct normal functions of the cells such as energy storage, information storage and retrieval, tissue regeneration, and sensing.