The two main Se oxyanions ( https://www.w3.org/1998/Math/MathML"> SeO 3 2 − https://s3-euw1-ap-pe-df-pch-content-public-u.s3.eu-west-1.amazonaws.com/9780429423482/fb4dd114-ce13-4e5c-aae2-028ecb69317b/content/eq48.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> and https://www.w3.org/1998/Math/MathML"> SeO 4 2 − https://s3-euw1-ap-pe-df-pch-content-public-u.s3.eu-west-1.amazonaws.com/9780429423482/fb4dd114-ce13-4e5c-aae2-028ecb69317b/content/eq49.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> ) in the environment have received considerable public concern, due to the bioavailability and potential to be toxic to biological systems. Strategies are needed to remediate or immobilize the oxyanion forms of Se. Microorganisms play an important role in Se transformations from soluble toxic forms to insoluble non-toxic Se(0), which is considered a promising technology for Se remediation (Nancharaiah et al. 2016). Furthermore, others have confirmed that bio-reduction of Se oxyanions usually formed elemental Se nanoparticles (~50–500 nm; SeNPs) (Jain et al. 2015).