ABSTRACT

In this book, the author convinces that Sir Arthur Stanley Eddington had things a little bit wrong, as least as far as physics is concerned. He explores the theory of groups and Lie algebras and their representations to use group representations as labor-saving tools.

chapter |1 pages

Why Group Theory?

Size: 0.23 MB

chapter 1|41 pages

Finite Groups

Size: 2.94 MB

chapter 2|13 pages

Lie Groups

Size: 1.11 MB

chapter 3|12 pages

SU(2)

Size: 0.95 MB

chapter 4|11 pages

Tensor Operators

Size: 0.97 MB

chapter 5|11 pages

Isospin

Size: 1.11 MB

chapter 6|8 pages

Roots and Weights

Size: 0.81 MB

chapter 7|5 pages

SU(3)

Size: 0.47 MB

chapter 8|22 pages

Simple Roots

Size: 1.46 MB

chapter 9|13 pages

More SU(3)

Size: 0.85 MB

chapter 10|28 pages

Tensor Methods

Size: 2.05 MB

chapter 11|12 pages

Hypercharge and Strangeness

Size: 0.91 MB

chapter 12|9 pages

Young Tableaux

Size: 0.71 MB

chapter 13|11 pages

SU(N)

Size: 0.83 MB

chapter 14|7 pages

3-D Harmonic Oscillator

Size: 0.63 MB

chapter 15|9 pages

SU(6) and the Quark Model

Size: 0.89 MB

chapter 16|7 pages

Color

Size: 0.79 MB

chapter 17|4 pages

Constituent Quarks

Size: 0.59 MB

chapter 18|12 pages

Unified Theories and SU(5)

Size: 1.31 MB

chapter 19|7 pages

The Classical Groups

Size: 0.65 MB

chapter 20|11 pages

The Classification Theorem

Size: 0.94 MB

chapter 21|10 pages

SO(2n + 1) and Spinors

Size: 0.79 MB

chapter 22|5 pages

SO(2n + 2) Spinors

Size: 0.47 MB

chapter 23|12 pages

SU(n) ⊂ SO(2n)

Size: 1.05 MB

chapter 24|9 pages

SO(10)

Size: 0.97 MB

chapter 25|6 pages

Automorphisms

Size: 0.57 MB

chapter 26|5 pages

Sp(2n)

Size: 0.52 MB

chapter 27|9 pages

Odds and Ends

Size: 0.76 MB