ABSTRACT

Discover Novel and Insightful Knowledge from Data Represented as a GraphPractical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or cluste

Introduction. An Introduction to Graph Theory. An Introduction to R. An Introduction to Kernel Functions. Link Analysis. Graph-Based Proximity Measures. Frequent Subgraph Mining. Cluster Analysis. Classification. Dimensionality Reduction. Graph-Based Anomaly Detection. Performance Metrics for Graph Mining Tasks. Introduction to Parallel Graph Mining. Index.