Answering the need to facilitate quantum-chemical calculations of systems with thousands of atoms, Kazuo Kitaura and his coworkers developed the Fragment Molecular Orbital (FMO) method in 1999. Today, the FMO method can be applied to the study of whole proteins and protein-ligand interactions, and is extremely effective in calculating the propertie

Introduction. Theoretical Background of the Fragment Molecular Orbital (Fmo) Method and Its Implementation in GAMES. Developments of FMO Methodology and Graphical User Interface in ABINIT-MP. Excited States of Photoactive Proteins by Configuration Interaction Studies. The Fragment Molecular Orbital-Based Time-Dependent Density Functional Theory for Excited States in Large Systems. FMO-MD: An Ab Initio-Based Molecular Dynamics of Large Systems. Application of the FMO Method to Specific Molecular Recognition of Biomacromolecules. Detailed Electronic Structure Studies Revealing the Nature of Protein-Ligand Binding. How Does the FMO Method Help in Studying Viruses and Their Binding to Receptors? FMO as a Tool for Structure-Based Drug Design. Modeling a Protein Environment in an Enzymatic Catalysis: A Case Study of the Chorismate Mutase Reaction. Index.